Online Secret Sharing

Laszlo Csirmaz

Central European University
Renyi Institute

Combinatorics in Secret Sharing
RISC@CWI
March 26, 2010
Contents

1. Threshold scheme – a case study
2. Secret sharing with plenty of participants
3. Ramp schemes
4. Online secret sharing
A case study: infinite 2-threshold scheme

Requirements

1. each share is independent of the secret
2. any two shares determine the secret
A case study: infinite 2-threshold scheme

Requirements

1. each share is independent of the secret
2. any two shares determine the secret

Algebra (Shamir):

1. shares are values of a polynomial (line)
2. the field \mathbb{F} should be infinite
3. the scheme is determined by the *distribution* of the polynomials
4. no translation invariant distribution exists

️
A case study: infinite 2-threshold scheme

\(F\) is finite

the line can be chosen uniformly, and the secret is independent of the share.
A case study: infinite 2-threshold scheme

\[F \text{ is infinite} \]

no uniform distribution exists on the lines.
A case study: infinite 2-threshold scheme

Requirements

1. each share is independent of the secret
2. any two shares determine the secret

Geometry (Blaklay & Swanson):

1. shares are points along a line in the projective plane
2. we have a homogeneous uniform distribution
3. there is a duality between lines and points
4. no independence between share and secret
Given the **share**, the random line is uniform, but the **secret** is not independent.

The share and the secret are not independent.
A solution (G. Tardos)

- the secret is \(s \in (0, 0.5) \)
- participants are real numbers between 0 and 0.5
- \(R \) is a uniform random number in \([0, 1]\)
- if \(x \) is a participant, his share is \(xs + R \pmod{1} \)

Clearly, \(x \)'s share is independent of the secret.

To recover the secret from \(x \)'s and \(y \)'s share compute

\[
(xs + R) - (ys + R) = (x - y)s \pmod{1}.
\]

As \(-0.5 < (x - y)s < 0.5\), the exact value can be computed from this mod 1 value.
A solution (G. Tardos)

- the secret is $s \in (0, 0.5)$
- participants are real numbers between 0 and 0.5
- R is a uniform random number in $[0, 1]$
- if x is a participant, his share is $xs + R \pmod{1}$

Clearly, x’s share is independent of the secret.

To recover the secret from x’s and y’s share compute

$$(xs + R) - (ys + R) = (x - y)s \pmod{1}.$$

As $-0.5 < (x - y)s < 0.5$, the exact value can be computed from this mod 1 value.

Problem

generalize this for other threshold schemes.
Contents

1. Threshold scheme – a case study

2. Secret sharing with plenty of participants

3. Ramp schemes

4. Online secret sharing
Formal definitions

Definition (Secret Sharing)

Given the (infinite) set P of participants, a *secret sharing* is a collection of random variables $\{\xi_i : i \in P\} \cup \{\xi_s\}$ with a joint distribution.

Definition (Perfect Secret Sharing)

Given an upward closed access structure $A \subseteq \mathcal{P}(P)$, S is *perfect* if

1. if A is qualified, then $\{\xi_i : i \in A\}$ determines ξ_s,
2. if A is not qualified, then $\{\xi_i : i \in A\}$ is independent of ξ_s.

Definition (Ramp Secret Sharing)

S is *ramp scheme* if instead of 2 we have

3. if A is not qualified, then $\{\xi_i : i \in A\}$ does not determine ξ_s.
Existence of Perfect SSS

Theorem (Ito, Saito, Nishizeki (87); Banaloh, Leichter (88))

If P *is finite, then every access structure on* P *can be realized.*

Fact (Probability theory)

If A is countable and ξ_i is independent of every finite subset of $\{\xi_i : i \in A\}$, then it is independent from the whole collection.

Corollary

Suppose P is countably infinite. Then no perfect secret sharing scheme exists for $A = \{A \subseteq P : A$ is infinite$\}$.
Existence of Perfect SSS

Theorem (Ito, Saito, Nishizeki (87); Banaloh, Leichter (88))

If P is finite, then every access structure on P can be realized.

Fact (Probability theory)

If A is countable and ξ_s is independent of every finite subset of $\{\xi_i : i \in A\}$, then it is independent from the whole collection.
Existence of Perfect SSS

Theorem (Ito, Saito, Nishizeki (87); Banaloh, Leichter (88))

If P is finite, then every access structure on P can be realized.

Fact (Probability theory)

If A is countable and ξ_s is independent of every finite subset of $\{\xi_i : i \in A\}$, then it is independent from the whole collection.

Corollary

Suppose P is countably infinite. Then no perfect secret sharing scheme exists for $A = \{A \subseteq P : A$ is infinite $\}$.
Existence of Perfect SSS

Theorem

There is a perfect secret sharing scheme realizing $A \subseteq \mathcal{P}(P)$ if and only if A is generated by finite sets.

Proof

\Rightarrow If no finite subset of A is qualified, then the secret is independent of the shares in A, i.e. A is not qualified either.

\Leftarrow The secret s is a single bit. Write s as the mod 2 sum of independent random bits for each minimal qualified set. Assign each participant the corresponding bit from all qualified sets she is in.
Reduction

Theorem

For any \(A \), there exists a perfect (ramp) SSS realizing \(A \) iff there is one where the secret is a single bit.

Definitions

- \(P \) is the set of participants
- \(X_i \) for \(i \in P \) is the set of shares of \(i \), \(\Omega_i \) is a \(\sigma \)-algebra on \(X_i \)
- \(X = \prod_i X_i \), \(\Omega \) is the product \(\sigma \)-algebra on \(X \)
- for \(A \subseteq P \), \(X_A = \prod_{i \in A} X_i \)
- \(\mu, \nu \) are a probability measures on \(X \), i.e. \(\mu(X) = \nu(X) = 1 \)
- \(\mu_A \) is the marginal measure on \(X_A \), i.e. \(\mu_A(E) = \mu(E \times X_{P \setminus A}) \)
- \(\mu \perp \nu \) if \(X = U \cup^* V \) with \(\mu(U) = \nu(V) = 0 \)
Existence of Perfect Secret Sharing Scheme

Measure-theoretic characterization

Theorem

Let P be the set of participants, A be an access structure. The existence of a perfect SSS realizing A is equivalent to:

find sets X_i, σ-algebras Ω_i on X_i for $i \in P$, and two probability measures μ and ν on the product space $X = \prod_{i \in P} X_i$ such that

- when $A \subseteq P$ is qualified, then $\mu_A \perp \nu_A$ (they are mutually singular),
- when $A \subseteq P$ is unqualified, then $\mu_A = \nu_A$.

Existence of Ramp Secret Sharing Scheme

Measure-theoretic characterization

Theorem

Let P be the set of participants, A be an access structure. The existence of a ramp SSS realizing A is equivalent to:

find sets X_i, σ-algebras Ω_i on X_i for $i \in P$, and two probability measures μ and ν on the product space $X = \prod_{i \in P} X_i$ such that

- when $A \subseteq P$ is qualified, then $\mu_A \perp \nu_A$ (they are mutually singular)
- when $A \subseteq P$ is unqualified, then μ_A and ν_A have the same null sets.
Contents

1 Threshold scheme – a case study
2 Secret sharing with plenty of participants
3 Ramp schemes
4 Online secret sharing
Exotic ramp scheme examples

1. Participant $i \in \mathbb{N}$ receives uniform and random $r_i \in [0, 1]$; the secret is $s = \sum_i r_i 2^{-i}$.
 This is an *all-or-nothing* ramp scheme: even if one participant is missing, the rest does not have full information on s.

2. Participant $i \in \mathbb{N}$ receives either 0 or 1 such that the sequence $\{r_i\}$ is eventually constant. The secret is the limit of $\{r_i\}$.
 In this ramp scheme every infinite subset can recover the secret, and no finite subset has full information (assign probabilities properly).

3. Participants are indexed by real numbers between 0 and 1.
 Choose a measurable function f on $[0, 1]$ with $\int f = 0$ or 1, and assign the share $f(x)$ to x.
 Every set of outer measure 1 can recover the secret, and sets of outer measure < 1 have no full information.
An open Problem

Problem (Existence of ramp schemes)

Does there exist a ramp scheme for every access structure?

or at least,

does there exist a ramp scheme for every access structure on countably many participants?
An open Problem

Problem (Existence of ramp schemes)

Does there exist a ramp scheme for every access structure?

or at least,

does there exist a ramp scheme for every access structure on countably many participants?
Contents

1. Threshold scheme – a case study
2. Secret sharing with plenty of participants
3. Ramp schemes
4. Online secret sharing
Reusing random bits

Theorem (G. Tardos)

Suppose P is countable, and $\mathcal{A} \subseteq \mathcal{P}(P)$ is generated by finite sets. Then there is a perfect SSS for a single bit of secret so that every participant receives finitely many bits only.

Proof

Participant i receives a fresh random bit $r^i(X)$ for each subset X of $\{1, 2, \ldots, i-1\}$ (a total of 2^{i-1} bits). Moreover, if i is the last member of $A \in \mathcal{A}$, then i receives $s^i(A)$ such that

$$s = s^i(A) \oplus \sum_{j<i, j \in A} r^j(A \cap \{1, 2, \ldots, j-1\}).$$
Reusing random bits

Proof (cont)

\[s = s^i(A) \oplus \sum_{j < i, j \in A} r^j(A \cap \{1, 2, \ldots, j - 1\}). \]

- when \(A \subseteq P \) is qualified then participants in \(A \) can recover \(s \).
- when \(B \subseteq P \) is not qualified, then \(B \) has no information on the secret:
 For each \(A \in \mathcal{A} \) choose the minimal \(j \in A \) not in \(B \), and mark \(j \)'s bit for \(A \). Each \(A \) has exactly one marked bit, and swapping these bits \(B \)'s view does not change, but \(s \) changes.
Online secret sharing

An analogy to online graph coloring:

- participants receive their shares in order they arrive
- their identity is hidden
- only qualified subsets with known members are revealed
- shares once assigned cannot be changed later on.

Theorem

*Every realizable access structure can be realized online; the shares are at most exponential in the sequence number; if P is countable, then the shares can be finite; if $|P| = \kappa^+$, then the shares can have cardinality $\leq \kappa$.***
Online secret sharing

Definition (Online complexity)

Given \mathcal{A}, the online complexity is the size of the largest share any participant receives normalized by the size of the secret.

Theorem

Assume \mathcal{A} is graph based, and G has maximal degree d. Then the online complexity of \mathcal{A} is at most d.

Proof

The secret is a single bit s. v_1 gets d random bits r_1^1, \ldots, r_1^d. When vertex v_k is processed, the for each backward edge $v_k \xleftarrow{} v_i$ with $i < k$ the next unused random bit r_i^* of v_i is used, and v_k gets $s \oplus r_i^*$ for this edge. Further, v_k gets fresh random bits r_d^1, \ldots reserved for the forward edges starting from v_k. \qed
Online secret sharing

Theorem

- Both online and offline complexity of the path of length 3 is 1.5

Problems

- Show that the online complexity of the path of length ℓ is at least $2 - 1/(\ell - 1)$.
- Prove that the online complexity is superlinear.
- Prove that the online complexity is superpolynomial.
- Suppose P has cardinality continuum. Determine whether the online/offline complexity of any structure on P is countable, or (consistently) bigger than countable. (Does Martin’s axiom help?)
Thank you for your attention